skip to main content


Search for: All records

Creators/Authors contains: "Olufunso, Oje"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-toface environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited to virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3Dprinted miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2- day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the ASEE Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning. 
    more » « less
  2. null (Ed.)
    The 2020 coronavirus pandemic necessitated the transition of courses across the United States from in-person to a virtual format. Effective delivery of traditional, lecture-based courses in an online setting can be difficult and determining how to best implement hands-on pedagogies in a virtual format is even more challenging. Interactive pedagogies such as hands-on learning tools, however, have proven to significantly enhance student conceptual understanding and motivation; therefore, it is worthwhile to adapt these activities for virtual instruction. Our team previously developed a number of hands-on learning tools called Low-Cost Desktop Learning Modules (LCDLMs) that demonstrate fluid mechanics and heat transfer concepts—traditionally utilized by student groups in a classroom setting, where they perform qualitative and quantitative experiments and interactively discuss conceptual items. In this paper we examined the transition of the LCDLM hands-on pedagogy to an entirely virtual format, focusing on a subset of results with greater detail to be shown at the ASEE conference as we analyze additional data. To aid the virtual implementations, we created a number of engaging videos under two major categories: (1) demonstrations of each LCDLM showing live data collection activities and (2) short, animated, narrated videos focused on specific concepts related to learning objectives. In this paper we present preliminary results from pre- and post- implementation conceptual assessments for the hydraulic loss module and motivational surveys completed for virtual implementations of LCDLMs and compare them with a subset of results collected during hands-on implementations in previous years. Significant differences in conceptual understanding or motivation between hands-on and virtual implementations are discussed. This paper provides useful, data-driven guidance for those seeking to switch hands-on pedagogies to a virtual format 
    more » « less